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Abstract— Recently, large language models (LLMs) have
shown strong potential in facilitating human-robotic interaction
and collaboration. However, existing LL.M-based systems often
overlook the misalignment between human and robot percep-
tions, which hinders their effective communication and real-
world robot deployment. To address this issue, we introduce
SYNERGAI, a unified system designed to achieve both per-
ceptual alignment and human-robot collaboration. At its core,
SYNERGAI employs 3D Scene Graph (3DSG) as its explicit and
innate representation. This enables the system to leverage LLM
to break down complex tasks and allocate appropriate tools
in intermediate steps to extract relevant information from the
3DSG, modify its structure, or generate responses. Importantly,
SYNERGALI incorporates an automatic mechanism that enables
perceptual misalignment correction with users by updating its
3DSG with online interaction. SYNERGAI achieves comparable
performance with the data-driven models in ScanQA in a zero-
shot manner. Through comprehensive experiments across 10
real-world scenes, SYNERGAI demonstrates its effectiveness in
establishing common ground with humans, realizing a success
rate of 61.9% in alignment tasks. It also significantly improves
the success rate from 3.7% to 45.68% on novel tasks by
transferring the knowledge acquired during alignment.

I. INTRODUCTION

Imagine a household robot assisting humans in their
homes, receiving an instruction “help me grab my coffee mug
from the kitchen”, as depicted in Fig. 1. While this task seems
routine, complications arise if the robot lacks knowledge of
where the kitchen is or, more importantly, cannot discern the
coffee mug among the various containers in the 3D environ-
ment. Achieving an accurate understanding of such scenes,
including their semantic attributes, spatial arrangements, and
personalized references like “one’s coffee mug,” is essential
for the robot to effectively employ its planning, navigation,
and manipulation skills. Effective communication between
humans and robots, whether simple or complex, relies on
establishing a common ground to facilitate human-robot
collaborations, with perception serving as its foundational
milestone. Despite the recent popularity of applying LLM in
robotics [1]-[5], they overlook this fundamental aspect.

To achieve effective human-robot collaboration, a robotic
system must meet several key requirements: (1) the ability to
construct a compact representation of the 3D environment;
(2) the versatility to handle various tasks under natural-
language instructions in a zero-shot manner; and (3) the flexi-
bility to quickly align with users through natural interactions,
all within a coherent system.
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Fig. 1: Overview of SYNERGAI. Leveraging 3D Scene
Graph (3DSQG) as its representation, SYNERGAI decomposes
complex tasks with LLMs and takes actions with our de-
signed tools in intermediate steps. It interacts with humans
through natural language and non-verbal mouse-clicking,
facilitating human-robot collaboration and perceptual align-
ment by automatically modifying the data stored in 3DSG.
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However, existing systems fall short of these requirements:
they are not yet capable of perfectly perceiving real-world
scenes and are not customized for individual users, making
it difficult to learn personalized concepts such as naming
conventions or preferences shaped by diverse cultures and
lifestyles. Thus it is essential for the robot to quickly cor-
rect perceptual misalignment with users to enhance human-
machine cooperation in completing real-world tasks.

In this paper, we propose SYNERGALI, a system that meets
the aforementioned criteria. Our framework takes a collection
of posed images as input, reconstructs the 3D scene and
constructs a 3D Scene Graph (3DSG) [6]-[9] as its data
structure. The 3DSG encapsulates hierarchical topology and
key information necessary for 3D reasoning, including object
categories, attributes, states, and spatial relationships.

Taking advantage of the explicit and explainable advantage
of 3DSG, we leverage LLM to break down complex tasks—
such as question answering, task planning, and captioning—
into intermediate steps, and allocate appropriate tools for
completing these steps. The toolset is designed to extract
relevant knowledge from the 3DSG, make modifications, or
generate responses based on the user input, supporting a wide
range of open-world reasoning tasks. Additionally, we have
incorporated an alignment mechanism that autonomously
recognizes users’ intention of alignment and triggers a pro-
cess to update the 3DSG on the fly. For higher efficiency in
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human-robot interaction, we have developed a user-friendly
graphical interface that allows users to freely interact with the
scene by dragging, zooming-in/out, changing views, marking
objects and asking free-form questions at will.

We conduct extensive experiments to demonstrate SYNER-
GAT’s capabilities in human-robot collaboration and align-
ment. Results show that, even in a zero-shot manner, it
achieves comparable performance with data-driven methods
on ScanQA [10]. More importantly, we perform real-world
alignment experiments of varying difficulties between SYN-
ERGAI and humans to systematically assess its ability to
establish common ground with humans. Our model realizes
a success rate of 61.9% for the alignment tasks while provid-
ing a smooth interaction experience (64.87% per-step user
satisfaction rate). It further demonstrates the capability to
transfer the acquired knowledge to novel tasks by improving
their success rate from 3.70% to 46.58%.

II. RELATED WORK

Human-Robot Alignment Significant attention has re-
cently been focused on the Human-machine alignment [11],
[12], especially for aligning LLMs with human intentions
and values [13], [14] with Reinforcement Learning from Hu-
man Feedback (RLHF) [15]-[17] or supervised fine-tuning
(SFT) [18]. In robotics, human-robot alignment centers on
improving their coordination in real-world scenarios. Previ-
ous efforts have been devoted to enhancing effective human-
robot interaction through dialogue, including generating help
requests [19], seeking oracle in planning [20]-[22], following
embodied instructions [23], and resolving the uncertainty of
LLM-based planners [24]. Despite their progress in estab-
lishing natural language communications with humans [3],
[25], [26], one limitation is the presumption that the robot
and humans have reached a common ground, overlooking
the fact that the robotic perception capabilities remain far
from perfect to date. In this paper, we propose a systematic
framework that enables the robot to align with humans both
preemptively and during collaborative tasks. The alignment is
facilitated through natural interactions, i.e., natural language
or a virtual interface, thereby endowing robots with correct
perception aligned with individual human perspectives.

LLM in Robotics Previous research has effectively
leveraged pre-trained LLMs’ in-context learning abilities for
embodied agents to generate actionable task plans [1]-[3],
[271-[29], recover from failure [4], [5], [30]-[32], perform
low-level control [33], or specify reward functions [34]-
[37]. In order to enable these language models to perceive
physical environments, visual information is either decoded
with grounded models [38] or directly treated as input by
multi-modal language model (MMLM) [39]-[41]. However,
the power of these foundation models is often limited in
separate stages of training or inference, leaving the poten-
tial for humans to teach the robots unexplored. Thus our
framework is proposed to facilitate the robots’ potential to
evolve in understanding the 3D world through interactions
with humans. We utilize the structured representation of
3DSG [6]-[9] and its compatibility with LLM to boost

human-robot coordination, a critical aspect for deploying
personalized humanoids in real-world scenarios.

LLM in 3D Scene Understanding The popularity of
LLMs has recently spurred the development of 3D scene
understanding in various tasks, e.g., object referral [42]—
[44], captioning [45], [46], vision-language-navigation [47],
[48] and reasoning [10], [49]. The signature efforts like
3D-LLM [50], Chat-3D [51], LEO [52] and 3DMIT [53]
investigate alternatives to incorporate the multi-modal inputs,
e.g., 3D point clouds, images, and texts, into a pre-trained
LLM and further fine-tune the model on more data for down-
stream tasks. In this paper, we devise a framework capable
of performing 3D reasoning tasks important for human-
robot collaboration, i.e., embodied question answering, task
planning, and captioning, all in a zero-shot manner. The
agent utilizes 3DSG as explicit representations and harnesses
the extensive reasoning capabilities of foundation models to
interact with humans and accomplish comprehensive tasks.

III. METHOD

In this section, we present 3D scene reconstruction and the
construction of 3DSG in Section III-A. We then illustrate the
system design in Section [II-B with available tools in Table I.

A. 3D Scene Reconstruction and 3D Scene Graph (3DSG)

From posed RGBD images, the 3D mesh of a scene can
be reconstructed through either depth fusion and marching
cubes algorithm [54] following ScanNet [55], or via neural
rendering with state-of-the-art methods [56], [57]. Subse-
quently, we obtain the object instances and their semantic
labels by employing 3D instance segmentation [58], 2D
image classification [40] and multi-view association [59].

3DSG have recently emerged as an effective world rep-
resentation for robotics [9], [60]-[63], capturing a hier-
archically organized semantic graph representation of an
environment with the versatility to encode the object states
and spatial relationships. The data structure is suitable for
parsing and we convert the graph to the LLM inputs similar
to JSON serialization (see example observations in Fig. 2).
The 3DSG is defined as a hierarchical graph G = (V,€),
where each node v € V represents one distinct 3D object
instance, denoted by its position, size, and attributes. The
edges & represent spatial relationships between nodes.

To construct the scene graph G, we first instantiate the
nodes with the instance predictions from the reconstructed
mesh and assign object classes with their corresponding
semantic labels. To acquire the semantic-rich object states
and attributes, we utilize 3D object segmentation to identify
its occurrence in the multi-view images through rendering.
The images are then cropped with the rendered bounding
boxes and processed through BLIP2 [40] to generate infor-
mation about the object’s color, texture, shape, material and
affordance. Following prior work [8], [43], [64], we utilize
the positional and size information of objects within the
scene to model the following spatial relations:

« Horizontal proximity reflects the distance of horizontal
object placements, e.g., close or far.
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@ What is the item above the blue box?

Q The item above the blue box is a book.

Prompt: You are an assistant agent in a room. When the user ask for information or ask you to
learn something, using your tools to collect the required information and propose data modification.
Make a rough plan first. Each step of this plan corresponds to a single action. At each step, select
an action, analyze your observation, and determine your next action based on the observations you
received so far, the user's request, and your original plan.

Plan:
1. Use query_for_items to find items related to "blue box" to identify the blue box.
2. Use query_for_relations to find items that are above the identified blue box.
Step 0
Observation: “The position of the box (id: 21) is [-0.25, -2.24, 0.23]. The box (id: 21) has attributes:

Thought: Given the identification of the blue box with id 21, the next step is to find items that are

Step 1

Observation: "The position of the box (id: 21) is [-0.25, -2.24, 0.23]. The box (id: 21) has attributes:
['cuboid']. The box (id: 21) is support book (id: 49). The box (id: 21) is resting on floor (id: -3). ....... "
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Thought: The observation indicates that the book (id: 49) is supported by the box (id: 21), which
means the book is above the blue box. This is the item we were looking for based on the user's

blue

box
3D Scene Graph

query. Now, | will proceed to post-process this information to prepare for the final answer.

Step 2

Fig. 2: The design of SYNERGAI and an example interaction. SYNERGALI represents 3D scene with 3DSGs and leverages
LLMs to respond to user inputs. It is first prompted to generate a plan, which effectively decomposes the input task into
sub-tasks to be solved in a sequential process. At each step, SYNERGALI selects a fool as its action based on the observation,
which contains the results of the previous actions. In this example, the system identifies the correct object of relationship
“on the blue box”, but incorrectly recognizes it as a book, where perception misalignment happens.

o Vertical proximity encompasses both in-contact rela-
tionships (e.g., support, inside, embed), and non-
contact ones (e.g., above, below).

o Allocentric relations describe the directional ones like
left, right, in front of, etc., which depend
contextually on the robots’ viewing direction. Our
framework dynamically updates the allocentric relation-
ships based on its current position and viewing angle.

We traverse all object nodes to compute spatial relations,
which undergo auto-verification to rectify incorrect ones.

B. System Design

Given the 3DSG as the scene representation, we aim to
develop a robot system that can communicate with humans,
perform 3D reasoning tasks, and align with human percep-
tion by leveraging the power of LLM. However, this presents
two major challenges: 1) The intricate nature of the tasks and
the 3D scenes makes it difficult to directly utilize the full
3DSG for complex reasoning, even for LLM. 2) Language-
based interaction alone is insufficient for efficiently referenc-
ing objects in the presence of erroneous labels and relations,
which is essential to accomplish the alignment tasks. The
following explains how the design of SYNERGAI addresses
these two challenges.

Task Decomposition We begin by noting that it’s more
efficient to tackle complex tasks step-by-step, similar to
Chain-of-Thought (CoT) [65], and most intermediate reason-
ing steps exhibit locality—they are solvable once the relevant
information is retrieved from the 3D scenes. Therefore, our
idea is to prompt the system to decompose the complex tasks

into intermediate steps and progressively gather relevant sub-
graphs from the 3DSG to tackle them. As illustrated in
Fig. 2, upon receiving user input, SYNERGAI invokes a
sequential process with LLM, where at each step the system
receives an observation, generates a thought and selects
an action. The actions are calls to a set of APIs called
tools, and the thought is the reasoning process and rationale
behind choosing the next action. The observation contains
the summarized information in the previous action, e.g.,
the sub-graph retrieved from 3DSG. This process continues
unless the agent gathers enough information and selects
the termination tool final_answer, which finishes the
reasoning process and returns the final response to the user.

Note that the agent is prompted to compose a plan that
outlines the task decomposition at the first step in Fig. 2.
By composing such a plan, the agent is guided to recognize
the user’s intent, thereby reducing its workload in later
steps. Moreover, by conditioning on this plan, the agent can
proceed in a top-down fashion and select actions accordingly.
Note that the actual executed actions may deviate from the
original plan: the agent is capable of modifying its plan
during thoughts when new observation reveals mistakes.
Such flexibility turns out to be essential for complex 3D
reasoning tasks where they can be resolved in different ways.

Observation Starting from the second step, SYNERGAI
generates an observation that summarizes the information
retrieved from the 3DSG by the last action or indicates errors
occurred in calling tools. The agent utilizes these observa-
tions to generate thoughts and decide its next action. The
retrieved information, i.e., sub-graph, contains a list of strings
of objects of interest, including their names, ids, attributes,



TABLE I: The toolset for SYNERGAI. They are designed as Python APIs, with the top five tools for 3D reasoning, the
following four for alignment, and the last two for generating responses to the user.

Tool Input Return Description

query-for_objects String, G List[Object] Collect the objects mentioned in a user input.
query_for_relations List[Object], G List[Relation] Collect the relations associated with a list of objects.
find-marked-object Click, G Object Collect the information of the object marked by the user.
calculatemid_point List[Point], G Point Calculate the midpoint of a list of Points.
find_object._closest Point, G Object Collect the object closest to a point.

update_name List[String], List[Object], G G, List[Object] Update the labels of a list of objects.
update_attributes Object, List[String], G G, List[Relation] Update the attributes of an object.

add_relation Object, Object, Relation, G G, List[Relation] Add a relation between two objects.
delete_relation Object, Object, Relation, G G, List[Relation] Remove a relation between two objects.

List[Objects]
String

post_process

final_answer String

List[Objects]

Return the relevant information for the graphical user interface (GUI).
Return the final response for the input.

and relations with other objects. We convert them into sen-
tences compatible with LLMs using templates. For example,
we use “The {object.name} (id: {object.id})
has attributes: {object.attributes}.” as the
template for rendering the attribute-related information.

Human-Robot Interaction As previously mentioned,
object references are essential for achieving alignment as
they provide a common ground for communication. How-
ever, under erroneous perception, users may struggle to
reference objects with incorrect labels and attributes in 3D
environments via pure language-based interactions. Moti-
vated by the higher efficiency of non-verbal cues in object
reference than pure language in human communication [66]—
[68], we address this challenge by implementing a GUI,
which includes the reconstructed 3D scene, the segmentation,
and the 3D Scene Graph. It further allows users to mark
objects by clicking in the 3D scene or the nodes in the 3DSG.
This non-verbal interaction is robust against semantic errors
and can function if an object is properly segmented. Users
can thus refer to an item as “the marked object” in their
inputs after clicking on it, which significantly reduces their
workload in human-robot alignment.

Tools The final piece of SYNERGALI is the tools avail-
able for each intermediate step, which are a set of Python
APIs summarized in Table I. The tools are designed to extract
relevant information from the 3DSG, modify its structure, or
generate responses based on the user input. Our designed
tools can be categorized into three purposes, 3D reasoning,
alignment, and response generation, but during the sequential
task-solving process, SYNERGAI automatically identifies the
user intent and selects tools accordingly based on the user
inputs. This means SYNERGAI can decide if it is required
to perform 3D reasoning or align with humans based on
the users’ natural language instructions, without the need for
mode shifting or explicit task specifications.

Implementation We develop SYNERGAI based on the
LangChain [69] framework, with GPT-4 turbo as the
underlying LLM backend. LangChain manages the sequen-
tial process of observation, thought, and action, including
generating step-wise prompts, parsing the agent’s output,
and executing the tools. The step-wise prompt combines a
template with the latest observation, doc-strings of tools, and

all historical observations, actions, and thoughts.

IV. EXPERIMENTS
A. Human-Robot Collaboration in Zero-shot 3D Reasoning

Dataset and Metrics To extensively evaluate SYNER-
GAT’s capability in high-level human-robot collaboration
with language-guided interactions, we evaluate its zero-shot
3D reasoning task performance, with qualitative demon-
strations in object captioning, scene captioning, question-
answering and task planning in Fig. 3. To quantitatively
evaluate its performance, we select the one that best reflects
its reasoning capability, question-answering (QA) task. We
utilize the ScanQA [10] benchmark to test our system.
Since we evaluate our system in a zero-shot manner without
alignment, we directly test its performance on its validation
set, encompassing a total of 4675 scene QA tasks from 71 3D
scenes in ScanNet [55]. Following common practice [10], we
assess the QA performance using Exact Match (EM), CIDEr,
BLEU-1, METEOR, and ROUGE.

Performance Analysis From Fig. 3, we can see SYNER-
GAI is capable of accomplishing various 3D reasoning tasks
in a zero-shot manner. Table II demonstrate the quantitative
results on ScanQA, where our model achieves comparable
performance to the methods fine-funed on ScanQA, yet fails
short on the metric EM. The discrepancy can be attributed
to the fact that our system generates answers by leveraging
the power of LLM, which aligns more closely with human
preference. For instance, given the question “What is sitting
on top of the toilet tank lid?”, our response is “A towel is
sitting on top of the toilet tank lid.”, whereas the ground-truth
response is simply “fowel”. The differentiation in format
significantly affects metrics like EM.

B. Human-Robot Alignment

Setup We systematically assess SYNERGAI’s capabil-
ity in achieving perceptual alignment with humans span-
ning 10 real-world scenes sourced from the ScanNet [55]
dataset. The tests include two phases, i.e., alignment tasks
and knowledge transfer. In the first phase, we devise 42
alignment tasks targeted at the perception errors related to
object naming, shape, material, and spatial relations. The
tasks are designed in the form of question-answering and



Question Answering:
Q: What is on the counter to

the right of refrigerator? -
A: Cup and coffee maker. %

Q: What color are the kitchen ¢ @’A 73
cabinets? ~‘, i

A: The kitchen cabinets are A

white. Some have attributes 1

including being oblong and

3D Scene Caption: The scene is a detailed kitchen
environment, equipped with various appliances such as
coffee makers, a microwave, and a stove. It includes
multiple storage solutions like cabinets and a dish rack,
alongside basic necessities like a sink and refrigerator.
Structural elements such as the ceiling, floor, doors, and
doorframes define the kitchen's physical boundaries.

Object Caption (refrigerator): The refrigerator is white

4 S and oblong. It is on the floor and beside a cabinet. It is
made of wood. y close to another cabinet and to the right of various items

including a door, backpack, and doorframes. It s in front of
Q: Where is the paper towel SL.) numerous kitchen items such as a stove, cabinets,
roll located? ‘ 1 & dishwasher, and a microwave.

A: The paper towel roll is

located inside a cabinet, Task Planning: | want to make dinner, give me a plan.

within the area of the stove.  Given the available kitchen appliances and areas, here's a step-by-step plan for making dinner:
1.Preparation Phase: Decide on a recipe and  4.Serving: Plate your dishes on the counter.

Q: What shape is the open  gather ingredients. 5.Cleanup: Rinse dishes and use the dishwasher.

kitchen cabinet? 2.Prep Work: Use the counter for food preparation

A: The kitchen cabinet is and the sink for washing.

oblong in shape. 3.Cooking: Use the stove or microwave for cooking.

6.Enjoy your meal. This plan assumes basic
cooking ingredients and utensils are available.

Fig. 3: Qualitative results of 3D Reasoning Tasks.

TABLE II: Zero-shot Performance on ScanQA. Our model
reaches comparable performance with fine-tuned baselines.

Model EM CIDEr BLUE-1 METEOR ROUGE
Fine-tuned

VoteNet+MCAN [10] 17.3 54.7 28.0 114 29.8
ScanRefer+MCAN [10] 18.6 55.4 26.9 11.5 30.0
ScanQA [10] 21.0 64.9 30.2 13.1 333
Flamingo (MultiView) [50]  18.8 55.0 25.6 11.3 31.1
BLIP2 (MultiVIew) [50] 13.6 45.7 29.7 11.3 26.6
3D-LLM (Flamingo) [50] 20.4 59.2 30.3 12.2 323
Zero-shot

Ours 11.4 57.9 30.1 12.9 30.4

the objective is to correct the system’s perception through
interaction, ensuring that the system’s final responses ul-
timately align with humans. Based on the number of ob-
jects involved with perception misalignment, the tasks are
divided into EASY (misalignment=1, 25 tasks) to HARD
(misalignment>1, 17 tasks). In the second phase, we
design 27 novel tasks to measure if the knowledge acquired
from the alignment can be transferred.

We engage the participation of 10 human subjects for
the alignment experiment. They first undergo a preparatory
session to become acquainted with our system under in-
structions, following which each participant is assigned tasks
across 3 scenes. During the alignment experiments, subjects
are tasked to inspect and correct the perception of the agent
within the GUI using both natural language and mouse-click
interactions. Participants are required to provide a binary
rating for the system’s response to each interaction and assess
the success of the alignment after each task.

Metrics We evaluate the success rate of the align-
ment task with both human (SRy,me,) and LLM (SR;u)
judgments. The answer accuracy of our system before the
alignment is evaluated by LLM as a baseline, denoted as
SRpni;. The ratio of reasonable responses (RRyeraction) from
our system during the interactions is judged by the human
subjects. For task difficulty, we report the average number
of interactions required to complete per task (#Inter./Iask)
and the average number of actions that the system executes
to generate responses in one interaction (#Action/Inter.). The
query ratio (QR) is reported as the ratio of tokens required
to encode the extracted relevant sub-graphs and the full
3DSG. The knowledge transfer tasks are also measured by
the success rate of question-answering. We provide the mean
and 95% confidence intervals for all the metrics.

Results Table III and Fig. 5 present the major results for
the alignment experiments, and Table IV demonstrates the

= Hard Task: Is the hanger to the left of the ironing board?
1 1: Is the hanger located to the left of the ironing board? @

g ...... This indicates a challenge in directly identifying
items like hangers or ironing boards based on their
names alone......

2: What is the marked item?
! é The marked item is a mirror with attributes......
£33 3: The marked item is an ironing board. ®
Easy Task: What is the color of the door? @ The marked item is updated to ‘ironing board'......
lat¥hatisifiolcologofieldoor 4: What is to the left of the ironing board? @

The color of the door is not specified in the
available information.

2: The color of the door is white. @

There are several items to the left of the ironing
board, including a trash can, a TV, and a chair,
among others......

The color of the door has been
successfully updated to white.

Novel Task: | want to attach posters to all the
white doors. How many posters should | buy?
GT: Two.

n: Now is the hanger to the left of the ironing board? @

g The hanger is to the left of the ironing board.

Novel Task: List all the blue items in the scene.
GT: Answer should include the ironing board.

Fig. 4: Examples of human-robot alignment. Humans
solve the EASY task within shorter interaction steps com-
pared with the HARD task, where the user checks and cor-
rects the label of the ironing board by clicking (the 2™ & 3™
user inputs). Novel tasks are designed such that knowledge
from the alignment is required for their completion.

quantitative results for the knowledge transfer experiments.
Below we summarize the key observations.

o Our system is capable of achieving perceptual align-
ment with humans, which is validated by the task
success rate from both human (SRy,u.,) and machine
(SRrry) evaluations. Meanwhile, it provides reasonable
responses at each step of the interactions from the
interaction satisfactory ratio.

o The task difficulty significantly impacts both success
rates and efforts for alignment. The SRy man, SRLLM
and RRjueraciion all present a notable gap between the
EASY and HARD tasks. Efforts for alignment (#In-
ter/Task) are twice for the HARD tasks, while the
#Action/Inter. remains similar. This suggests a human
tendency to decompose complex alignment to simpler
tasks that impose a constant load for LLM-based agent.
The Query Ratio is also higher for HARD tasks as they
involve more objects in the 3DSG. Fig. 5a shows an
interaction step increase from tasks related to unary
semantics, i.e., object attributes, to those involving n-
ary information such as numeric counting or spatial
relations, with success ratios consistently decreasing.

o The object reference plays a pivotal role in per-
ception alignment. We conduct an ablation study to
verify the significance of mouse-clicking interactions.
Results in Fig. 5¢ show a notable decline in the task
success rate and an increase in the steps required for
alignment without mouse clicking. This is attributed to
the extra steps needed to reference the relevant objects,
constituting a common ground for communication. Such
findings align with our motivation for designing the GUI
to facilitate efficient object marking, and underscore the
necessity to develop improved human-robot interaction
interfaces for future VR/AR and robot applications.

¢ Our model can transfer the knowledge acquired in
the alignment to novel tasks. We design a baseline
model that leverages in-context prompting [70], which
takes the ground-truth knowledge for the alignment



TABLE III: Quantitative results of human-robot alignment.

“SR” denotes the success rate for the alignment tasks, “RR”

for the rate of reasonable responses and “QR” for the query ratio of the 3DSG.

Alignment Task

Task Difficulty

SRpit (%) SRHuman (%) SRLLm (%) RRinteraction (%) #Inter./Task #Action/Inter. QR (%)
EASY 8.00 91.18+9.89 72.00+14.14 74.06+9.19 3.38+0.68 3.23+0.17 2.55+0.78
HARD 0.0 72.48+14.2 47.06+20.15 51.36£9.49 6.45+1.07 3.30+0.24 3.86+1.23
OVERALL 4.76 83.61£8.36 61.90+11.83 64.87+£7.31 4.65+0.74 3.26+0.13 3.08+0.68
Inter./Task e w/ Click
L1 = Task SR 100 80 /""" . 94 97 s wj/o Click
% 8 80 5 Seo / //
§ 6 60 £ % o~ - 61 67
5 & %, S
§ 4 1 w0 R ° // —e— Hard .o 71
€ 20 — —s— Easy :
2 20 g 3.4 2.8
L7
0 Attribute Numeric Spatial 0 0 2 4 6 8 10 Task SR (%) Inter. RR (%) #Inter./Task Query Ratio (%)

Interaction Steps

(a) Success rate and #Interations by task. (b) Task success rat

e vs. #interactions. (c) Ablation on mouse clicking.

Fig. 5: Statistics of alignment experiments. (a) The success rate decreases for more complex tasks with increasing interaction
steps required to achieve alignment. (b) The trend of task success rate as the interaction step increases. (c) The user interface
impacts users’ ability to reference objects and hinders the alignment performance when mouse clicks are not used.

TABLE IV: Knowledge Transfer to Novel Tasks. Results
are reported in Success Rate (%) as measured by LLM.

Init. In-Context Prompting [70] Ours

EASY 2.56 23.08 43.59
HARD 4.76 28.57 47.62
OVERALL  3.70 25.93 45.68

tasks as additional inputs in the prompt, to answer the
questions in the novel tasks. On the contrary, our model
directly takes the updated 3DSG from the alignment
phase, though not perfect. As shown in Table IV, our
improved results prove the effectiveness of explicitly
updating the 3DSG during alignment, which leads to
better systematic generalizability for novel tasks.

C. Discussion and Limitation

In this paper, we focus on evaluating the applicability
of LLM-based agents to function in real-world settings,
emphasizing their robustness to operate effectively under
imperfect perceptions rather than showcasing their strengths
in ideal settings. We believe this is fundamental for the
practical use of LLM-based agents in the real world, e.g.,
comprehensive reasoning and task planning by callable exe-
cution module as action primitives as in Fig. 1.

We identify the following limitations of our system. First,
despite the remarkable reasoning capabilities of LLMs, their
tendency towards hallucination may lead to plans and re-
sponses that deviate from the 3DSG. Second, we design tools
for our system to ensure their functionality completeness for
existing tasks. This indicates our framework may not be able
to perform certain “novel” operations, such as grouping the

nodes in the 3DSG. Third, the performance of our system is
limited to the 3D reconstruction and segmentation methods
to construct 3DSG, and it currently operates at the object
level. Future efforts could focus on expanding its capabilities
to encompass more levels of perception and understanding.
Finally, while SYNERGAI’s zero-shot reasoning capability
can generalize to novel scenes, its improved representation
after alignment only works in one specific scene. Leveraging
its interaction with humans to enhance its adaptability and
scalability to novel scenes is one important future direction.

V. CONCLUSION

In this paper, we present SYNERGAI, a novel framework
designed to achieve human-robot collaboration and bridge
their perceptual gap. SYNERGAI leverages 3D reconstruc-
tion to create 3D Scene Graph as innate representations,
and decomposes complex tasks and solve them sequentially
through natural interactions with humans. Experimental re-
sults validate SYNERGAI’s capability in zero-shot 3D rea-
soning, achieving competitive performance on the ScanQA
benchmark without alignment. Furthermore, our alignment
experiments highlight its proficiency in achieving human-
robot alignment across varying levels of task difficulty with
high user satisfaction ratio and transferability to novel tasks.
We hope our efforts and insights could facilitate the deploy-
ment of LLM-based robot systems in real-world scenarios.
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SYNERGAI: PERCEPTION ALIGNMENT FOR HUMAN-ROBOT COLLABORATION

APPENDIX
I. DETAILS OF SYNERGAI
A. 3D Scene Reconstruction

a) Reconstruction and Segmentation: From a sequence
of posed RGBD images, we can reconstruct the 3D scene
with several solutions. For one, the depth frames can be fused
into a Truncated Signed Distance Field (TSDF) volume using
the camera trajectory, and the surface mesh is reconstructed
using the marching cubes algorithm [54] following Scan-
Net [55]. With the recent development of Neural Radiance
Fields (NeRFs), we can also optimize the neural implicit
representation of the 3D scene via signed distance fields
(SDF) by volume rendering, with MonoSDF [56] being
a signature method. In the reconstructed scene, instance
segmentation is necessary to obtain information about objects
within the scene. We utilize the 3D-VisTA [58] method to
segment and extract positional and size information of the
3D objects.

The 3D scene can also be represented by point clouds,
where the points can be accumulated from the depth image
like ConceptGraphs [59]. In this way, the semantic labels
can be attained by merging the image-wise prediction from
2D foundation models from multi-views.

b) Data Collection: In real-world scenarios, compre-
hensive scene data is essential, including RGBD data, and
camera intrinsic and extrinsic parameters, to achieve decent
reconstruction results. To obtain this data, we employ RGBD
cameras, like RealSense [71] or Kinect [72] from existing
robot setups, or from captures from iPhone ARKit packages
following Multiscan [73].

ConceptGraphs MultiScan

MonoSDF

Scanned Data

ScanNet Data

Fig. A.1: Qualitative results of 3D reconstruction and
segmentation. MonoSDF [56] and MultiScan [73] recon-
struct the 3D scenes from posed RGBD images and we apply
3D-VisTA [58] to obtain segmentation. ConceptGraphs [59]
progressively reconstruct the 3D point clouds and assign
semantic labels to them. The figure shows that different
methods reveal limitations and failures in both reconstruction
or segmentation.

B. 3D Scene Graph (3DSG)

Following prior work [64], our 3D scene graph is defined
as a hierarchical graph G = (V, &), where the nodes V
comprises V1 |JValJ -« - Vi, with Vi, representing the set
of nodes at a particular hierarchical level. Each node v
represents one distinct 3D object instance and the edges
& represent spatial relationships between nodes. The rela-
tionships that our 3D scene graph captures are shown in
Table A.l. The hierarchies are determined by the support
relationship; for instance, objects supported by the floor
constitute Vy, while objects supported by the table will form
V1, etc.. Note that edges originating from one node v € Vj
may only terminate in nearby hierarchies Vi U V41 U Vg4 1.
In other words, edges in the scene graph exclusively connect
nodes within the same hierarchical level, or one level higher
or lower.

We instantiate the graph nodes with the instance segmen-
tation from the point cloud and parameterize each node
with object centroid p; € R? and size of the bounding
box. Next, we traverse all the nodes to determine their
spatial relationships. In addition, we utilize an automatic
verification procedure to validate the scene graph, further
improving the quality of the scene graph we constructed. One
of the verification operations involves manually maintaining
a mapping between objects and relationship descriptions
based on common sense. For example, people usually use
“mounted on” to describe the relation between TV and wall,
rather than “hanging on.”

To get detailed attributes of an object’s visual and physical
properties, we utilize the object captioning pipeline outlined
as follows. Given the multi-view images, we use the point
cloud of the object to get the visible points in the images
through rendering. The image is then cropped with the
rendered bounding box and processed through BLIP2 [40] to
generate information about the object color, shape, material
and affordance, etc. For the attributes from every image, we
calculate its CLIP [74] similarity score between the text and
the cropped image and select the top 10 with the highest
CLIP score and minimal occlusion. The selected attributes
are fed into a LLM to obtain a coherent summary for the
object. In this process, we explicitly instruct the language
model to identify and correct the potential errors.

C. System Design

Task Decomposition Our system decomposes the com-
plex tasks into intermediate steps and allocates tools to
complete them. We prompt the system for task decompo-
sition, which are demonstrated from our prompt template in
Fig. A3a and Fig. A.3b. The first three lines in Fig. A.3a
correspond to the prologue of this prompt that instructs the
agent to rely on the tools for responding to a user’s inputs.
The prologue is followed by four in-context examples of
plans. Note that in these plans we not only specify the tools
to be used but also the reasons for selecting these tools.



TABLE A.1: Relationships in 3D Scene Graph (3DSG).

Category Relation
support embed
hanging on inside
Vertical Proximity mounted on affixed on
below above
higher than lower than
. .. near far
Horizontal Proximity besides next to
. left right
Allocentric behind is in front of

Fig. A.3b includes an answer format section that illustrates
the syntax for calling tools and the sequential process of
resolving a user input and several rules.

Observation For LLMs to comprehend information in
3DSGs, we render the information retrieved from actions
using templates. Specifically, observations are organized on
the basis of objects. Observation for each each object can be
rendered from three templates. The first one is for position
and size: “The position of the {object.name}
(id: {object.id}) is {object.position}.”.
The second one is for attributes: “The {object.name}
(id: {object.id}) has attributes:
{object.attributes}.”. The third one is for relations:
“The {object.name} (id: {object.id})
is {relation} {name_id_list}.”, where
“{name_id_list}” is a list of strings in the format
of “{name} (id: {id})” generated for objects that have
the relation of interest to the object. To save up tokens,
the third template is used only for tools that reason about
relations, such as query_for_relations. When a tool
retrieves multiple objects, we iterate through the objects,
render strings, and then concatenate the strings to form the
observation for the tool.

Human-Robot Interaction As mentioned in Section III-
B, to facilitate human-robot alignment in the presence of
perception errors, we design a GUI that allows users to freely
interact with the scene by dragging, zooming-in/out, chang-
ing views, marking objects and asking free-form questions
at will. Furthermore, it provides the potential to combine
language-based interaction with object clicking for object
referencing. Fig. A.2 shows an example, in which the user
inspects and corrects the color of a door. In the GUI, the
user selects the object by clicking on a point. After a point
is clicked, we compute a 3D ray using the point (i.e. a point
in the viewing plane) and the user’s current viewing angle.
We take the first object whose meshes intersect with this 3D
ray as the marked object and display its bounding box in the
GUI, which is the yellow box around the door in Fig. A.2.

Tools The tools are a set of Python functions designed
for interacting with 3DSGs and the users. When generating
the overall step-wise prompt, LangChain extracts the doc-
strings of tools and injects them into the prompt, so the doc-
strings play a vital role in implementing tool usage. We use

a fixed format for the doc-strings and show an example in
Fig. A.4. The doc-string starts with a brief description of the
tool’s functionality (lines 3 and 4). The “Hints” section spec-
ifies expected behaviors. For example, the 1™ hint says that
the ambiguity of objects should be resolved by the user. If
one changes this hint to “...... , call this tool for each of the
candidates”, then all of the objects related to the user input
will be altered. The following three hints dictate constraints
on the input argument, new_attributes_list. In this
case, we expect the LLM to update one or more attributes of
an object but keep the rest of the attributes unchanged. The
“Argument” and “Return” sections are introduced to facilitate
tool calling.

Wt o e oo of e marked et

The marked door curently has no color atrbutes listed, 5o
m unabie to provide the color of the door:

The color of the marked door has boen succossfull updato
dtowhite.

\4

Fig. A.2: A screenshot for our interface. A user can select
the scene to interact using the drop-down menu located at the
upper left. The left part consists of the reconstructed view,
the local 3DSG for the object of interest (bottom left), and
object segmentation (bottom middle). The user can chat with
our system using the input box located in the middle right.
It can also select an object by clicking it in the reconstructed
view or the 3DSG. In this example, the user marks the door.

II. EXPERIMENTS
A. Setup

We utilize the reconstructed meshes provided by the
dataset for our experiments on the ScanNet [55], which are
reconstructed by depth fusion and marching cubes [54]. For
real-world robot execution, we utilize MonoSDF [56] to ob-
tain the 3D scene reconstruction. We utilize 3D-VisTA [58]
to get the instance segmentation for all the experiments.

B. Alignment Tasks

We list all the alignment tasks from ScanNet in Ta-
ble A.2. Based on the number of objects involved with
perception misalignment, the tasks are divided into EASY
(misalignment=1) to HARD (misalignment>1).

We engage the participation of 10 human subjects for our
alignment experiment, each assigned tasks across 3 scenes.
For the ablation study, the subjects are allowed to use the
GUI but are instructed to refrain from using mouse clicks.
We randomly select 3 participants from the 10 and assign
each 2 scenes randomly from the task pool to report the
quantitative evaluations.



/You are an assistant agent in a room and you have to respond to input from a user. When the user ask for information of items in the room, collect the required N
information using your tools. When the user ask you to learn something, use your tools to do so. When the user ask you for advices or actionable plans, make up one with
your own knowledge and ground the plan to the room using your tools.

Make a rough plan first. Each step of this plan corresponds to a single action. State the plan before your first action.

[start of example plan]

User Input: Find the bed.

Plan:

1. Use query_related_objects to extract candidate items that could correspond to the bed.

2. If you can identify the bed, then include information of the bed in your response. Otherwise, in your response, ask the user for clarification.
3. Use post_process.

4. Use Final Answer to return your response to the user.

User Input: What is to the left of the marked item?

Plan:

1. Use find_marked_object to to locate the marked item.

2. Use query_for_relations to gather information of spatial relationship between the marked item and other items, then determine the all items that are to the left of them
marked item.

3. Use post_process.

4. Use Final Answer to return your response to the user.

User Input: What is in the middle of the bed and the desk?

Plan:

1. Extract the coordinates of the bed and the desk by using query_for_items_info.

2. Use calculate_mid_point to compute the mid point of the coordinates of the bed and the desk.
2. Use find_object_closest to find the item that is closest to the mid point of the bed and the desk.
3. Use post_process.

4. Use Final Answer to return your response to the user.

User Input: | want to fall asleep in a warm and dark environment. What should | do?

Plan:

1. Use query_related_objects to find all items that are related to [fall asleep warm dark]. Compose a imaginary plan as if you could operate the related items.
2. Use post_process.

3. Use Final Answer to return your imaginary plan to the user. Remember to include the [id] and [location] of related items in your plan.

\[end of example plan]

J

(a) The first part of our prompt template.

(At each step, select an action, analyze your observation, and determine your next action based on the observations you received so far, the user's request, and your )

original plan. Follow this format.

[start of answer format]

Action: “{{{{"action”: [selected action], "action_input": [action input],}}}}
Observation:

Thought: [thought]

Action: " {{{{"action”: [selected action], "action_input": [action input],}}}}
Observation:

... (repeat Thought/Action/Observation N times)

Thought: [thought]

Action: "{{{{"action”: post_process, "action_input": [action input],}}}}
Observation:

Thought: [thought]

Action: " {{{{"action”: Final Answer, "action_input": [final response],}}}}

[end of answer format]

Rules:
1. Be sure to include an Action in your response.
2. For [selected action], use one tool from [{tool_names}].
3. For [action input], refer to the descriptions of the tools.
4. When choosing Final Answer, do not format [final response] as a dict. Use a sentence in natural language for [final response].
5. Be sure to choose Final Answer at the last step.
6. For [thought], include your reasoning for choosing the next step.
7. State your plan before the first action.
NG J

(b) The second part of our prompt template.

Fig. A.3: Our prompt template. This template will be combined with doc-strings of tools, latest observations, and historical
information.
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def update_object_attributes (
new_attributes_list: List([str], object_id: str, xxkwargs) -> dict:
"""Update the attributes of a specific object. Use this tool when the user

ask you to change some of the attributes of an object.

Hints:

1. If there are multiple candidates for object_id, do not call this tool
and ask the user for clarification.

2. The attributes of an object is a list of strings that specify the color,
the texture or other information of an object. Before using this tool, use
query_for_objects to get the current attribute list of the object under
consideration.

3. To prepare the input argument new_attributes_list, start with the
current attributes list. Replace the corresponding elements in the current
attributes list with new values specified by the user. For example, 1f the
current attributes list is ["blue", "wooden", "rectangular"] and the user
asks you to change the color to red and the shape to triangular, then the
new attributes list should be ["red", "wooden", "triangular"].

4. Do not alter the values of the attributes not mentioned by the user.

Arguments:

new_attributes list: list, the new list of attributes to be assigned to the
object, eg. ["blue", "wooden"]
object_id: str, the id of the object to be updated, eg. "1".

Return:

mnon

observation: str, information about the object under consideration.
results: list, a list that contains the object under consideration.

Fig. A.4: An example for the doc-strings of tools.



TABLE A.2: Evaluation tasks designed for the ScanNet dataset. In our experiments, we also provide participants with

images for objects involved in each task, so that they can refer to the objects by clicking.

Scene Task ID  Category  Difficulty  Task Expected Answer

tl Attribute Easy What is the tv made from? Plastic.
scene0011_00 2 Spatial Hard What is the item that is above the stove? Stove hood.

t3 Numeric Hard How many tables are there in the room? Two.

tl Attribute Easy Is the blue box triangular in shape? No.

2 Spatial Easy What is the item above the blue box? Toolbox.

t3 Spatial Hard What is the item’s name for sitting and to the right of desk and behind the =~ Sofa.
scene0050_00 door?

t4 Spatial Hard What is the item above the desk and beside the laptop? Printer.

t5 Spatial Hard What is the item in front of the piano? Piano bench.

t6 Numeric Easy How many chairs are there in the room? One.

tl Attribute Easy What is the color of the plastic trash can? Gray.
scene0169-00 2 Attribute Hard What is the partition made from? Glass.

3 Attribute Hard Is the red backpack oblong in shape? No.

tl Attribute Easy What is the color of the screen? Black.
scene0342_00 2 Attribute Easy What is the color of the desk that is lower than the screen? Brown.

3 Spatial Hard Is the red backpack placed on the black table? Yes.

t4 Spatial Easy Is the red backpack hung on the wall? No.

tl Attribute Easy What is the microwave oven made from? Stainless steel.

2 Attribute Hard Is the armchair round in shape? No.
scene0355-00 t3 Attribute Easy Is the armchair made from wood? No.

t4 Numeric Hard How many tables are there in the room? Two.

5 Numeric Hard How many chairs are there in the room? Eight.

tl Attribute Easy ‘What is the color of the dresser? Shallow yellow.

2 Attribute Easy Is there any white recycling bin in the room? Yes.
scene0356-00 3 Attribute Easy Is the black chair rectangular in shape? No.

t4 Attribute Easy Are the shelf and the desk of the same color? Yes.

t5 Numeric Hard How many doors are there in the room? Two.

tl Attribute Easy What is the color of the door? White.
scenc0389.00 ©2 Spatial Hard Is the hanger located to the left of the ironing board? Yes.

- 3 Spatial Hard What is to the left of the cabinet on which a TV is resting? Include a refrigerator.

4 Attribute Easy Are the two doors in the same color? Yes.

tl Attribute Easy What is the shape of the door? Rectangular / oblong.
scene0406-00 2 Attribute Easy What is the white sink made from? Ceramic.

t3 Attribute Easy Are the sink and the bathtub made from the same materials? Yes.

tl Spatial Hard What is behind the trash bin? A glass partition and a door frame.
scenc0427.00 ©2 Numeric Easy How many tables are there in the room? One.

- 3 Numeric Hard How many chairs are there in the room? Four.

4 Numeric Hard How many doors are there in the room? One.

tl Attribute Easy What is the white rectangular dresser made from? Wood or metal.

2 Attribute Easy ‘What is the monitor made from? Plastic.
scene0144.00 t3 Spatial Easy What is item on top of nightstand? Printer.

t4 Spatial Easy What is item supporting the monitor? Small desk.

t5 Numeric Easy How many dressers are there? Two.




