
SYNERGAI: PERCEPTION ALIGNMENT FOR HUMAN-ROBOT COLLABORATION

APPENDIX

I. DETAILS OF SYNERGAI

A. 3D Scene Reconstruction

a) Reconstruction and Segmentation: From a sequence
of posed RGBD images, we can reconstruct the 3D scene
with several solutions. For one, the depth frames can be fused
into a Truncated Signed Distance Field (TSDF) volume using
the camera trajectory, and the surface mesh is reconstructed
using the marching cubes algorithm [54] following Scan-
Net [55]. With the recent development of Neural Radiance
Fields (NeRFs), we can also optimize the neural implicit
representation of the 3D scene via signed distance fields
(SDF) by volume rendering, with MonoSDF [56] being
a signature method. In the reconstructed scene, instance
segmentation is necessary to obtain information about objects
within the scene. We utilize the 3D-VisTA [58] method to
segment and extract positional and size information of the
3D objects.

The 3D scene can also be represented by point clouds,
where the points can be accumulated from the depth image
like ConceptGraphs [59]. In this way, the semantic labels
can be attained by merging the image-wise prediction from
2D foundation models from multi-views.

b) Data Collection: In real-world scenarios, compre-
hensive scene data is essential, including RGBD data, and
camera intrinsic and extrinsic parameters, to achieve decent
reconstruction results. To obtain this data, we employ RGBD
cameras, like RealSense [71] or Kinect [72] from existing
robot setups, or from captures from iPhone ARKit packages
following Multiscan [73].

ScanNet Data Scanned Data

M
ul

tiS
ca

n
C

on
ce

pt
G

ra
ph

s
M

on
oS

D
F

Fig. A.1: Qualitative results of 3D reconstruction and
segmentation. MonoSDF [56] and MultiScan [73] recon-
struct the 3D scenes from posed RGBD images and we apply
3D-VisTA [58] to obtain segmentation. ConceptGraphs [59]
progressively reconstruct the 3D point clouds and assign
semantic labels to them. The figure shows that different
methods reveal limitations and failures in both reconstruction
or segmentation.

B. 3D Scene Graph (3DSG)

Following prior work [64], our 3D scene graph is defined
as a hierarchical graph G = (V, E), where the nodes V
comprises V1

⋃
V2

⋃
· · ·

⋃
VK , with Vk representing the set

of nodes at a particular hierarchical level. Each node v
represents one distinct 3D object instance and the edges
E represent spatial relationships between nodes. The rela-
tionships that our 3D scene graph captures are shown in
Table A.1. The hierarchies are determined by the support
relationship; for instance, objects supported by the floor
constitute V0, while objects supported by the table will form
V1, etc.. Note that edges originating from one node v → Vk

may only terminate in nearby hierarchies Vk ↑Vk+1 ↑Vk+1.
In other words, edges in the scene graph exclusively connect
nodes within the same hierarchical level, or one level higher
or lower.

We instantiate the graph nodes with the instance segmen-
tation from the point cloud and parameterize each node
with object centroid pi → R3 and size of the bounding
box. Next, we traverse all the nodes to determine their
spatial relationships. In addition, we utilize an automatic
verification procedure to validate the scene graph, further
improving the quality of the scene graph we constructed. One
of the verification operations involves manually maintaining
a mapping between objects and relationship descriptions
based on common sense. For example, people usually use
“mounted on” to describe the relation between TV and wall,
rather than “hanging on.”

To get detailed attributes of an object’s visual and physical
properties, we utilize the object captioning pipeline outlined
as follows. Given the multi-view images, we use the point
cloud of the object to get the visible points in the images
through rendering. The image is then cropped with the
rendered bounding box and processed through BLIP2 [40] to
generate information about the object color, shape, material
and affordance, etc. For the attributes from every image, we
calculate its CLIP [74] similarity score between the text and
the cropped image and select the top 10 with the highest
CLIP score and minimal occlusion. The selected attributes
are fed into a LLM to obtain a coherent summary for the
object. In this process, we explicitly instruct the language
model to identify and correct the potential errors.

C. System Design

Task Decomposition Our system decomposes the com-
plex tasks into intermediate steps and allocates tools to
complete them. We prompt the system for task decompo-
sition, which are demonstrated from our prompt template in
Fig. A.3a and Fig. A.3b. The first three lines in Fig. A.3a
correspond to the prologue of this prompt that instructs the
agent to rely on the tools for responding to a user’s inputs.
The prologue is followed by four in-context examples of
plans. Note that in these plans we not only specify the tools
to be used but also the reasons for selecting these tools.

TABLE A.1: Relationships in 3D Scene Graph (3DSG).

Category Relation

Vertical Proximity

support embed
hanging on inside
mounted on affixed on

below above
higher than lower than

Horizontal Proximity near far
besides next to

Allocentric left right
behind is in front of

Fig. A.3b includes an answer format section that illustrates
the syntax for calling tools and the sequential process of
resolving a user input and several rules.

Observation For LLMs to comprehend information in
3DSGs, we render the information retrieved from actions
using templates. Specifically, observations are organized on
the basis of objects. Observation for each each object can be
rendered from three templates. The first one is for position
and size: “The position of the {object.name}
(id: {object.id}) is {object.position}.”.
The second one is for attributes: “The {object.name}
(id: {object.id}) has attributes:
{object.attributes}.”. The third one is for relations:
“The {object.name} (id: {object.id})
is {relation} {name id list}.”, where
“{name id list}” is a list of strings in the format
of “{name} (id: {id})” generated for objects that have
the relation of interest to the object. To save up tokens,
the third template is used only for tools that reason about
relations, such as query for relations. When a tool
retrieves multiple objects, we iterate through the objects,
render strings, and then concatenate the strings to form the
observation for the tool.

Human-Robot Interaction As mentioned in Section III-
B, to facilitate human-robot alignment in the presence of
perception errors, we design a GUI that allows users to freely
interact with the scene by dragging, zooming-in/out, chang-
ing views, marking objects and asking free-form questions
at will. Furthermore, it provides the potential to combine
language-based interaction with object clicking for object
referencing. Fig. A.2 shows an example, in which the user
inspects and corrects the color of a door. In the GUI, the
user selects the object by clicking on a point. After a point
is clicked, we compute a 3D ray using the point (i.e. a point
in the viewing plane) and the user’s current viewing angle.
We take the first object whose meshes intersect with this 3D
ray as the marked object and display its bounding box in the
GUI, which is the yellow box around the door in Fig. A.2.

Tools The tools are a set of Python functions designed
for interacting with 3DSGs and the users. When generating
the overall step-wise prompt, LangChain extracts the doc-
strings of tools and injects them into the prompt, so the doc-
strings play a vital role in implementing tool usage. We use

a fixed format for the doc-strings and show an example in
Fig. A.4. The doc-string starts with a brief description of the
tool’s functionality (lines 3 and 4). The “Hints” section spec-
ifies expected behaviors. For example, the 1th hint says that
the ambiguity of objects should be resolved by the user. If
one changes this hint to “. , call this tool for each of the
candidates”, then all of the objects related to the user input
will be altered. The following three hints dictate constraints
on the input argument, new attributes list. In this
case, we expect the LLM to update one or more attributes of
an object but keep the rest of the attributes unchanged. The
“Argument” and “Return” sections are introduced to facilitate
tool calling.

SYNERGAI

Fig. A.2: A screenshot for our interface. A user can select
the scene to interact using the drop-down menu located at the
upper left. The left part consists of the reconstructed view,
the local 3DSG for the object of interest (bottom left), and
object segmentation (bottom middle). The user can chat with
our system using the input box located in the middle right.
It can also select an object by clicking it in the reconstructed
view or the 3DSG. In this example, the user marks the door.

II. EXPERIMENTS

A. Setup
We utilize the reconstructed meshes provided by the

dataset for our experiments on the ScanNet [55], which are
reconstructed by depth fusion and marching cubes [54]. For
real-world robot execution, we utilize MonoSDF [56] to ob-
tain the 3D scene reconstruction. We utilize 3D-VisTA [58]
to get the instance segmentation for all the experiments.

B. Alignment Tasks
We list all the alignment tasks from ScanNet in Ta-

ble A.2. Based on the number of objects involved with
perception misalignment, the tasks are divided into EASY
(misalignment=1) to HARD (misalignment>1).

We engage the participation of 10 human subjects for our
alignment experiment, each assigned tasks across 3 scenes.
For the ablation study, the subjects are allowed to use the
GUI but are instructed to refrain from using mouse clicks.
We randomly select 3 participants from the 10 and assign
each 2 scenes randomly from the task pool to report the
quantitative evaluations.

Machine Learning Lab, BIGAI

You are an assistant agent in a room and you have to respond to input from a user. When the user ask for information of items in the room, collect the required
information using your tools. When the user ask you to learn something, use your tools to do so. When the user ask you for advices or actionable plans, make up one with
your own knowledge and ground the plan to the room using your tools.

Make a rough plan first. Each step of this plan corresponds to a single action. State the plan before your first action.
[start of example plan]
User Input: Find the bed.
Plan:
1. Use query_related_objects to extract candidate items that could correspond to the bed.
2. If you can identify the bed, then include information of the bed in your response. Otherwise, in your response, ask the user for clarification.
3. Use post_process.
4. Use Final Answer to return your response to the user.

User Input: What is to the left of the marked item?
Plan:
1. Use find_marked_object to to locate the marked item.
2. Use query_for_relations to gather information of spatial relationship between the marked item and other items, then determine the all items that are to the left of them
marked item.
3. Use post_process.
4. Use Final Answer to return your response to the user.

User Input: What is in the middle of the bed and the desk?
Plan:
1. Extract the coordinates of the bed and the desk by using query_for_items_info.
2. Use calculate_mid_point to compute the mid point of the coordinates of the bed and the desk.
2. Use find_object_closest to find the item that is closest to the mid point of the bed and the desk.
3. Use post_process.
4. Use Final Answer to return your response to the user.

User Input: I want to fall asleep in a warm and dark environment. What should I do?
Plan:
1. Use query_related_objects to find all items that are related to [fall asleep warm dark]. Compose a imaginary plan as if you could operate the related items.
2. Use post_process.
3. Use Final Answer to return your imaginary plan to the user. Remember to include the [id] and [location] of related items in your plan.
[end of example plan]

(a) The first part of our prompt template.

Machine Learning Lab, BIGAI

At each step, select an action, analyze your observation, and determine your next action based on the observations you received so far, the user's request, and your
original plan. Follow this format.

[start of answer format]
Action: ```{{{{“action”: [selected action], "action_input": [action input],}}}}```
Observation:
Thought: [thought]
Action: ```{{{{“action”: [selected action], "action_input": [action input],}}}}```
Observation:
... (repeat Thought/Action/Observation N times)
Thought: [thought]
Action: ```{{{{“action”: post_process, "action_input": [action input],}}}}```
Observation:
Thought: [thought]
Action: ```{{{{“action”: Final Answer, "action_input": [final response],}}}}
```
[end of answer format]

Rules:
1. Be sure to include an Action in your response.
2. For [selected action], use one tool from [{tool_names}].
3. For [action input], refer to the descriptions of the tools. 
4. When choosing Final Answer, do not format [final response] as a dict. Use a sentence in natural language for [final response].
5. Be sure to choose Final Answer at the last step.
6. For [thought], include your reasoning for choosing the next step.
7. State your plan before the first action.
"""

(b) The second part of our prompt template.

Fig. A.3: Our prompt template. This template will be combined with doc-strings of tools, latest observations, and historical
information.



1 def update_object_attributes(
2 new_attributes_list: List[str], object_id: str, **kwargs) -> dict:
3 """Update the attributes of a specific object. Use this tool when the user

4 ask you to change some of the attributes of an object.

5

6 Hints:

7 1. If there are multiple candidates for object_id, do not call this tool

8 and ask the user for clarification.

9 2. The attributes of an object is a list of strings that specify the color,

10 the texture or other information of an object. Before using this tool, use

11 query_for_objects to get the current attribute list of the object under

12 consideration.

13 3. To prepare the input argument new_attributes_list, start with the

14 current attributes list. Replace the corresponding elements in the current

15 attributes list with new values specified by the user. For example, if the

16 current attributes list is ["blue", "wooden", "rectangular"] and the user

17 asks you to change the color to red and the shape to triangular, then the

18 new attributes list should be ["red", "wooden", "triangular"].

19 4. Do not alter the values of the attributes not mentioned by the user.

20 Arguments:

21 new_attributes_list: list, the new list of attributes to be assigned to the

22 object, eg. ["blue", "wooden"]

23 object_id: str, the id of the object to be updated, eg. "1".

24

25 Return:

26 observation: str, information about the object under consideration.

27 results: list, a list that contains the object under consideration.

28 """

Fig. A.4: An example for the doc-strings of tools.



TABLE A.2: Evaluation tasks designed for the ScanNet dataset. In our experiments, we also provide participants with
images for objects involved in each task, so that they can refer to the objects by clicking.

Scene Task ID Category Difficulty Task Expected Answer

scene0011 00
t1 Attribute Easy What is the tv made from? Plastic.
t2 Spatial Hard What is the item that is above the stove? Stove hood.
t3 Numeric Hard How many tables are there in the room? Two.

scene0050 00

t1 Attribute Easy Is the blue box triangular in shape? No.
t2 Spatial Easy What is the item above the blue box? Toolbox.
t3 Spatial Hard What is the item’s name for sitting and to the right of desk and behind the

door?
Sofa.

t4 Spatial Hard What is the item above the desk and beside the laptop? Printer.
t5 Spatial Hard What is the item in front of the piano? Piano bench.
t6 Numeric Easy How many chairs are there in the room? One.

scene0169 00
t1 Attribute Easy What is the color of the plastic trash can? Gray.
t2 Attribute Hard What is the partition made from? Glass.
t3 Attribute Hard Is the red backpack oblong in shape? No.

scene0342 00
t1 Attribute Easy What is the color of the screen? Black.
t2 Attribute Easy What is the color of the desk that is lower than the screen? Brown.
t3 Spatial Hard Is the red backpack placed on the black table? Yes.
t4 Spatial Easy Is the red backpack hung on the wall? No.

scene0355 00

t1 Attribute Easy What is the microwave oven made from? Stainless steel.
t2 Attribute Hard Is the armchair round in shape? No.
t3 Attribute Easy Is the armchair made from wood? No.
t4 Numeric Hard How many tables are there in the room? Two.
t5 Numeric Hard How many chairs are there in the room? Eight.

scene0356 00

t1 Attribute Easy What is the color of the dresser? Shallow yellow.
t2 Attribute Easy Is there any white recycling bin in the room? Yes.
t3 Attribute Easy Is the black chair rectangular in shape? No.
t4 Attribute Easy Are the shelf and the desk of the same color? Yes.
t5 Numeric Hard How many doors are there in the room? Two.

scene0389 00

t1 Attribute Easy What is the color of the door? White.
t2 Spatial Hard Is the hanger located to the left of the ironing board? Yes.
t3 Spatial Hard What is to the left of the cabinet on which a TV is resting? Include a refrigerator.
t4 Attribute Easy Are the two doors in the same color? Yes.

scene0406 00
t1 Attribute Easy What is the shape of the door? Rectangular / oblong.
t2 Attribute Easy What is the white sink made from? Ceramic.
t3 Attribute Easy Are the sink and the bathtub made from the same materials? Yes.

scene0427 00

t1 Spatial Hard What is behind the trash bin? A glass partition and a door frame.
t2 Numeric Easy How many tables are there in the room? One.
t3 Numeric Hard How many chairs are there in the room? Four.
t4 Numeric Hard How many doors are there in the room? One.

scene0144 00

t1 Attribute Easy What is the white rectangular dresser made from? Wood or metal.
t2 Attribute Easy What is the monitor made from? Plastic.
t3 Spatial Easy What is item on top of nightstand? Printer.
t4 Spatial Easy What is item supporting the monitor? Small desk.
t5 Numeric Easy How many dressers are there? Two.


